## Fieldwork Surveying FS01

## 6. Lecture

## Determination of heights I

Presentation was supported by 105 1052201A003 FCE CTU in Prague Internal Project

### Determination of heights – essential terms



- Equipotential surface = a surface with the invariable
  - gravity potential (perpendicular to the force of gravity in each point).
  - Equipotential surfaces are not parallel mutually and they converge in the direction to the Pole.

For our purposes (i.e. for purposes of land surveying) the Earth is supposed to be a homogenous sphere. Then the zero equipotential surface is a spherical surface which comes through the zero height point and equipotential surfaces are concentric spherical surfaces. Absolute height of a point = height of a point above a chosen zero surface. The zero equipotential surface is the mean sea level → absolute height of a point = elevation (sea level height).

**Relative height of a point** = height of a point above an arbitrarily chosen equipotential surface, relative height of a point is actually a **height difference**.

**True horizon of a point** = equipotential surface which comes through the point.

**Apparent horizon of a point** = horizontal tangent plane in the point.

The Earth is supposed to be a plane and then true horizons are supposed to be apparent horizons (it means that the Earth's curvature can be negleted) for surveying within the distance about 300 m – see p. 5, 6.

#### Height differences (of true horizons) are measured

$$h_{AB} = H_B - H_A$$

## Influence of the Earth's curvature on heights



### Influence of the Earth's curvature on heights

 $\Delta = d \cdot tg \phi/2 \cong d \cdot \phi/2$ 

 $\phi/2 = d / 2r \implies \Delta = d^2 / 2r$ 

| d [m] | Δ [mm] |
|-------|--------|
| 50    | 0      |
| 350   | 10     |
| 1000  | 83     |

Vertical datum in the Czech Republic

#### 1. Baltic Vertical Datum – after Adjustment (Bpv)

the zero height point = the zero point of the water gauge in Kronstadt (Russia)

**2. Adriatic datum** – effective until 2000 (in Prague) the zero height point – in Trieste (Italy)

The height difference between Bpv and Adriatic datum is about 0,40 m (heights are higher in Adriatic datum).

## Methods of a height difference determination

- 1. direct levelling
- 2. barometric levelling
- 3. hydrostatic levelling
- 4. trigonometric method
- 5. Global Navigation Satellite Systems (GNSS)

## Direct levelling from the center between the rods

 $h_{AB} = H_B - H_A = b - f$  $H_B = H_A + h_{AB} = H_A + b - f$ 

**Section of levelling** = backward levelling rod + levelling instrument + forward levelling rod.



11

# Direct levelling from the center between the rods

If there are several sections of levelling (levelling line), then



12

## Advantages of direct levelling from the center between the rods

The Earth's curvature and an inclination of the line of sight are eliminated using this method.



$$h_{AB} = (b + \Delta) - (f + \Delta) = b - f + \Delta - \Delta = b - f$$

# Types of direct levelling according to precision

- 1. special-precision levelling
- 2. high-precision levelling
- 3. precise levelling
- 4. technical levelling (TL)

Accuracy criterion of TL – maximum  
difference between height differences  
determined twice  
$$\Delta_M = 40\sqrt{r}$$

r ... length of a levelling line (if the levelling line is measured twice) or half-length of a levelling line (if the levelling line is measured once) in km

 $\Delta_{\rm M}$  ... in mm

## Levelling instruments

Principle – a horizontal plane is set out by a levelling instrument.

- 1. optical levelling instruments
- 2. electronic levelling instruments
- 3. laser levelling instruments

## 1. Optical levelling instruments

#### 1. levelling instruments

The line of sight is levelled to the horizontal position by a levelling bubble.

 self-compensating levelling instruments
The line of sight is levelled to the horizontal position automatically by a compensator (pendulum). The circular level of the instrument has to be levelled in order that the compensator works.

## Levelling instruments - optical





## 2. Electronic levelling instruments

- levelling rods with a barcode are used
- the barcode is read by a CCD camera automatically, the reading is recorded and calculation is performed automatically
- errors caused by the observer are reduced

### Levelling instruments - electronic



## 3. Laser levelling instruments

- line of sight = visible laser beam (most often He-Ne, semiconductor)
- a visible plane of sight can be realized
- a sensor is placed on the rod for determination of the beam's centre (a divergence of the laser beam is about 30 mm for 200 m)
- accuracy of instruments is about 2 mm/100 m

## Levelling instruments - laser





## Levelling instruments - equipment

Levelling rods, footplates



### Test of levelling instrument

Is the line of sight horizontal?

$$\begin{aligned} h_{AB} &= b' - f' \\ h'_{AB} &= i' - j' \end{aligned} \qquad o = \frac{h_{AB} - h'_{AB}}{2s} \end{aligned}$$

The correction of reading *o* for the distance 1 m of asymmetry



# Types of direct levelling with respect to procedure

- traverse levelling sections of levelling with backsights, foresights and intermediate sights (exceptionally) – see practical classes
- 2. longitudinal profiles and cross section levelling
- 3. surface levelling

# 2. Longitudinal profiles and cross section levelling

• often used for design and building of linear constructions (roads, railways), for a regulation of watercourse, ...

**longitudinal profile** = vertical section of a terrain which comes through the axis of the construction

**cross section** = vertical section of a terrain which is perpendicular to the axis of the construction

- technical levelling with intermediate sights is used for the heights determination of longitudinal and cross profiles points
- characteristic points (the beginning and the end of the arc) and other points in periodic space (e.g. 20 m) are measured
- requirement = accuracy should be in cm → the fundamental of the levelling from the centre between the rods can be contravened

### Measurement of a longitudinal profile



- longitudinal profile is displayed on a graph paper (crosssection paper)
- heights are ususally displayed using larger scale (e.g. 1:100) than scale for distances (e.g. 1:1000) to stress altitudinal component
- vertical alignment of the linear construction axis is designed to the longitudinal profile and then earthwork is calculated
- vertical alignment is usually designed to have fills the same as cuts approximately (equal cubages = minimal earthwork)





## Cross section

- number of cross sections depends on the fact if the relief is broken or plane. A choice of places for cross profiles supports a calculation of earthwork cubages as precisely as necessary.
- length of a cross profile depends on earthwork, it ranges usually from 20 m to 200 m
- perpendicular to the building axis is set out in the point of longitudinal profile and outer points and points which lie on breaks of the terrain are measured
- it is possible to measure cross section points simultaneously with longitudinal profile points

### Choice of cross section points



The cross section is displayed on a graph paper (crosssection paper), the scale is the same both for heights and distances (e.g. 1:100).



33

## Thank you for your attention!